C++ 全栈知识体系C++ 全栈知识体系
✿导航
  • 基础
  • 函数
  • 知识点
  • IO框架
  • 新版本特性
  • 数据库原理
  • SQL语言
  • SQL - MySQL
  • NoSQL - Redis
  • NoSQL - ElasticSearch
  • 算法基础
  • 常见算法
  • 领域算法
  • 分布式算法
  • 数据结构与算法
  • 计算机网络
  • 操作系统
  • 计算机组成
  • 开发
  • 测试
  • 架构基础
  • 分布式系统
  • 微服务
  • 中间件
  • 概念
  • 理论
  • 架构设计原则
  • 设计模式
  • 协议
  • 技术选型
  • 编码规范
  • 流水线构建 - CI/CD
  • 知识点 - Linux
  • 网站 - Nginx
  • 容器化 - Docker
  • 容器编排 - Kubernetes
  • 服务网格 - Service Mesh Istio
  • 常用快捷键 - Shortcut
  • 工具使用 - Tools
  • 开源项目
  • 学习项目
  • 个人项目
  • 项目开发
  • 项目Idea
  • 并发
  • 部署
  • 分布式
  • 知识
  • 问题
  • 编程语言与技术
  • 系统与架构
  • 软件开发实践
  • 数据处理与应用设计
  • 个人
  • 产品
  • 团队
  • 知识体系
  • Vue
关于
✿导航
  • 基础
  • 函数
  • 知识点
  • IO框架
  • 新版本特性
  • 数据库原理
  • SQL语言
  • SQL - MySQL
  • NoSQL - Redis
  • NoSQL - ElasticSearch
  • 算法基础
  • 常见算法
  • 领域算法
  • 分布式算法
  • 数据结构与算法
  • 计算机网络
  • 操作系统
  • 计算机组成
  • 开发
  • 测试
  • 架构基础
  • 分布式系统
  • 微服务
  • 中间件
  • 概念
  • 理论
  • 架构设计原则
  • 设计模式
  • 协议
  • 技术选型
  • 编码规范
  • 流水线构建 - CI/CD
  • 知识点 - Linux
  • 网站 - Nginx
  • 容器化 - Docker
  • 容器编排 - Kubernetes
  • 服务网格 - Service Mesh Istio
  • 常用快捷键 - Shortcut
  • 工具使用 - Tools
  • 开源项目
  • 学习项目
  • 个人项目
  • 项目开发
  • 项目Idea
  • 并发
  • 部署
  • 分布式
  • 知识
  • 问题
  • 编程语言与技术
  • 系统与架构
  • 软件开发实践
  • 数据处理与应用设计
  • 个人
  • 产品
  • 团队
  • 知识体系
  • Vue
关于
  • 开源项目

    • libco

      • libco - 协程学习
    • ButtonRPC

      • ButtonRPC - rpc基础
      • ButtonRPC - 框架解析
      • ButtonRPC - 编程实现
    • Tars

      • Tars - 简介
      • Tars - 框架学习
      • Tars - Cpp开发
      • Tars - Go开发
      • Tars - Docker部署
      • Tars - Gateway部署
  • 学习项目

    • hmdp(Redis实战项目)

      • hmdp - 概览
      • hmdp - 短信登录
      • hmdp - 商户查询缓存
      • hmdp - 秒杀优化
      • hmdp - 分布式锁
      • hmdp - Redission
      • hmdp - Redis消息队列
      • hmdp - 优惠卷秒杀
      • hmdp - 附近商户
      • hmdp - UV统计
      • hmdp - 用户签到
      • hmdp - 好友关注
      • hmdp - 达人探店
    • SSM(Spring+SpringMVC+MyBatis)

      • SSM - Spring框架学习
      • SSM - IOC/DI配置管理第三方bean
      • SSM - Spring整合
      • SSM - SpringAOP
      • SSM - SpringMVC 基础
      • SSM - SpringMVC 应用
      • SSM - Maven高级
      • SSM - SpringBoot
      • SSM - MyBatisPlus
  • 个人项目

    • person - 概述
  • 项目开发

    • 项目开发 - C++开源项目推荐
    • 项目开发 - 整体开发流程
    • 项目开发 - 优化项目内容
    • 项目开发 - 注意事项
    • 项目开发 - 统一建模语言UML类图
  • Idea

    • Idea - 思维框架图
    • Idea - 常用技术检索
    • Idea - 小技巧tips
    • Idea - 编程中的tips

hmdp - Redis消息队列

认识消息队列

消息队列(Message Queue):存放消息的队列,最简单的消息队列模型包括3个角色:

  • 消息队列:存储和管理消息,也被称为消息代理(Message Broker)
  • 生产者:发送消息到消息队列
  • 消费者:从消息队列获取消息并处理消息

使用队列的好处在于 解耦。

所谓解耦,举一个生活中的例子就是:快递员(生产者)把快递放到快递柜里边(Message Queue)去,我们(消费者)从快递柜里边去拿东西,这就是一个异步。如果耦合,那么这个快递员相当于直接把快递交给你,这事固然好,但是万一你不在家,那么快递员就会一直等你,这就浪费了快递员的时间,所以这种思想在我们日常开发中,是非常有必要的。

这种场景在秒杀中就变成了:我们下单之后,利用redis去进行校验下单条件,再通过队列把消息发送出去,然后再启动一个线程去消费这个消息,完成解耦,同时也加快我们的响应速度。

消息队列选型:现成的mq,比如kafka,rabbitmq等;也可以直接使用redis提供的mq方案,降低部署和学习成本。

实现消息队列的方式

Redis提供了三种不同的方式来实现消息队列:

  • list结构:基于List结构模拟消息队列
  • PubSub:基本的点对点消息模型
  • Stream:比较完善的消息队列模型

基于List实现消息队列

Redis的list数据结构是一个双向链表,很容易模拟出队列效果。

队列是入口和出口不在一边,因此我们可以利用:LPUSH 结合 RPOP、或者 RPUSH 结合 LPOP来实现。 不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像JVM的阻塞队列那样会阻塞并等待消息。因此这里应该使用BRPOP或者BLPOP来实现阻塞效果。

优点:

  • 利用Redis存储,不受限于JVM内存上限
  • 基于Redis的持久化机制,数据安全性有保证
  • 可以满足消息有序性

缺点:

  • 无法避免消息丢失
  • 只支持单消费者

基于PubSub的消息队列

PubSub(发布订阅)是Redis2.0版本引入的消息传递模型。顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消息。

  • SUBSCRIBE channel [channel] :订阅一个或多个频道

  • PUBLISH channel msg :向一个频道发送消息

  • PSUBSCRIBE pattern[pattern] :订阅与pattern格式匹配的所有频道

优点:

  • 采用发布订阅模型,支持多生产、多消费

缺点:

  • 不支持数据持久化
  • 无法避免消息丢失
  • 消息堆积有上限,超出时数据丢失

基于Stream的消息队列

Stream 是 Redis 5.0 引入的一种新数据类型,可以实现一个功能非常完善的消息队列。

发送消息的命令:

例如:

读取消息的方式之一:XREAD

例如,使用XREAD读取第一个消息:

XREAD阻塞方式,读取最新的消息:

在业务开发中,我们可以循环的调用XREAD阻塞方式来查询最新消息,从而实现持续监听队列的效果,伪代码如下

while(true){
    //尝试读取消息队列中的消息,最多阻塞2秒
    Object msg = redis.execute("XREAD COUNT 1 BLOCK 2000 STREAMS user $")
    
    if(msg == null){
        continue;
    }
    
    // 处理消息
    handleMessage(msg);
}

注意:当我们指定起始ID为$时,代表读取最新的消息,如果我们处理一条消息的过程中,又有超过1条以上的消息到达队列,则下次获取时也只能获取到最新的一条,会出现漏读消息的问题

STREAM类型消息队列的XREAD命令特点:

  • 消息可回溯
  • 一个消息可以被多个消费者读取
  • 可以阻塞读取
  • 有消息漏读的风险

基于Stream的消息队列-消费者组

消费者组(Consumer Group):将多个消费者划分到一个组中,监听同一个队列。具备下列特点:

创建消费者组:

XGROUP CREATE  key groupName ID [MKSTREAM]
  • key:队列名称
  • groupName:消费者组名称
  • ID:起始ID标示,$代表队列中最后一个消息,0则代表队列中第一个消息
  • MKSTREAM:队列不存在时自动创建队列

其它常见命令:

# 删除指定的消费者组
XGROUP DESTORY key groupName

# 给指定的消费者组添加消费者
XGROUP CREATECONSUMER key groupname consumername

# 删除消费者组中的指定消费者
XGROUP DELCONSUMER key groupname consumername

从消费者组读取消息:

XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] [NOACK] STREAMS key [key ...] ID [ID ...]
  • group:消费组名称
  • consumer:消费者名称,如果消费者不存在,会自动创建一个消费者
  • count:本次查询的最大数量
  • BLOCK milliseconds:当没有消息时最长等待时间
  • NOACK:无需手动ACK,获取到消息后自动确认
  • STREAMS key:指定队列名称
  • ID:获取消息的起始ID:
    • ">":从下一个未消费的消息开始
    • 其它:根据指定id从pending-list中获取已消费但未确认的消息,例如0,是从pending-list中的第一个消息开始

消费者监听消息的基本思路:

while(true){
    //尝试监听队列,使用阻塞模式,最长等待2000ms
    Object msg = redis.execute("XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >")
    
    //null表示没有消息,继续下一次
    if(msg == null){
        continue;
    }
    
    try{
    	// 处理消息
    	handleMessage(msg);
    }catch (Exception e){
    	while(true){
    		Object msg = redis.execute("XREADGROUP GROUP g1 c1 COUNT 1 STREAMS s1 0")
    
            //null表示没有异常消息,所有消息都已确认,结束循环
            if(msg == null){
                break;
            }
            
            try{
            	// 处理消息
            	handleMessage(msg);
            }catch (Exception e){
            	//再次出现异常,记录日志,继续循环
            	continue;
            }
    	}
    }
}

STREAM类型消息队列的XREADGROUP命令特点:

  • 消息可回溯
  • 可以多消费者争抢消息,加快消费速度
  • 可以阻塞读取
  • 没有消息漏读的风险
  • 有消息确认机制,保证消息至少被消费一次

三者对比:

ListPubSubStream
消息持久化支持不支持支持
阻塞读取支持支持支持
消息堆积处理受限于内存空间,可以利用多消费者加快处理受限于消费者缓冲区受限于队列长度,可以利用消费者组提高消费速度,减少堆积
消息确认机制不支持不支持支持
消息回溯不支持不支持支持

实践 - Redis的Stream结构作为消息队列,实现异步秒杀下单

需求:

  • 创建一个Stream类型的消息队列,名为stream.orders
  • 修改之前的秒杀下单Lua脚本,在认定有抢购资格后,直接向stream.orders中添加消息,内容包含voucherId、userId、orderId
  • 项目启动时,开启一个线程任务,尝试获取stream.orders中的消息,完成下单\

修改lua表达式,新增3.6

-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)

VoucherOrderServiceImpl

private class VoucherOrderHandler implements Runnable {

    @Override
    public void run() {
        while (true) {
            try {
                // 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
                List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                    Consumer.from("g1", "c1"),
                    StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
                    StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
                );
                // 2.判断订单信息是否为空
                if (list == null || list.isEmpty()) {
                    // 如果为null,说明没有消息,继续下一次循环
                    continue;
                }
                // 解析数据
                MapRecord<String, Object, Object> record = list.get(0);
                Map<Object, Object> value = record.getValue();
                VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                // 3.创建订单
                createVoucherOrder(voucherOrder);
                // 4.确认消息 XACK
                stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
            } catch (Exception e) {
                log.error("处理订单异常", e);
                //处理异常消息
                handlePendingList();
            }
        }
    }

    private void handlePendingList() {
        while (true) {
            try {
                // 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
                List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                    Consumer.from("g1", "c1"),
                    StreamReadOptions.empty().count(1),
                    StreamOffset.create("stream.orders", ReadOffset.from("0"))
                );
                // 2.判断订单信息是否为空
                if (list == null || list.isEmpty()) {
                    // 如果为null,说明没有异常消息,结束循环
                    break;
                }
                // 解析数据
                MapRecord<String, Object, Object> record = list.get(0);
                Map<Object, Object> value = record.getValue();
                VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                // 3.创建订单
                createVoucherOrder(voucherOrder);
                // 4.确认消息 XACK
                stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
            } catch (Exception e) {
                log.error("处理pendding订单异常", e);
                try{
                    Thread.sleep(20);
                }catch(Exception e){
                    e.printStackTrace();
                }
            }
        }
    }
}

Last Updated:
Contributors: klc407073648
Prev
hmdp - Redission
Next
hmdp - 优惠卷秒杀