hmdp - Redission

分布式锁-Redission

Redission功能介绍

基于setnx实现的分布式锁存在下面的问题:

重入问题:重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中,可重入锁的意义在于防止死锁,比如HashTable这样的代码中,他的方法都是使用synchronized修饰的,假如他在一个方法内,调用另一个方法,那么此时如果是不可重入的,不就死锁了吗?所以可重入锁他的主要意义是防止死锁,我们的synchronized和Lock锁都是可重入的。

不可重试:是指目前的分布式只能尝试一次,我们认为合理的情况是:当线程在获得锁失败后,他应该能再次尝试获得锁。

超时释放:在加锁时增加了过期时间,这样可以防止死锁,但是如果卡顿的时间超长,虽然采用了lua表达式防止删锁的时候,误删别人的锁,但是毕竟没有锁住,有安全隐患

主从一致性: 如果Redis提供了主从集群,当我们向集群写数据时,主机需要异步的将数据同步给从机,而万一在同步过去之前,主机宕机了,就会出现死锁问题。

Redission概述

Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。

Redission提供了分布式锁的多种多样的功能:

可重入锁(Reentrant Lock)
公平锁(Fair Lock)
联锁(MultiLock)
红锁(RedLock)
读写锁(ReadWriteLock)
信号量(Semaphore)
可过期性信号量(PermitExpirableSemaphore)
闭锁(CountDownLatch)
1
2
3
4
5
6
7
8

官网地址: https://redisson.org (opens new window)

GitHub地址: https://github.com/redisson/redisson (opens new window)

Redission快速入门

引入依赖:

<dependency>
	<groupId>org.redisson</groupId>
	<artifactId>redisson</artifactId>
	<version>3.13.6</version>
</dependency>
1
2
3
4
5

配置Redisson客户端:

@Configuration
public class RedissonConfig {

    @Bean
    public RedissonClient redissonClient(){
        // 配置
        Config config = new Config();
        config.useSingleServer().setAddress("redis://192.168.150.101:6379")
            .setPassword("123321");
        // 创建RedissonClient对象
        return Redisson.create(config);
    }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

使用Redission的分布式锁

@Resource
private RedissionClient redissonClient;

@Test
void testRedisson() throws Exception{
    //获取锁(可重入),指定锁的名称
    RLock lock = redissonClient.getLock("anyLock");
    //尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
    boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);
    //判断获取锁成功
    if(isLock){
        try{
            System.out.println("执行业务");          
        }finally{
            //释放锁
            lock.unlock();
        }
        
    } 
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

在 VoucherOrderServiceImpl 中注入RedissonClient

@Resource
private RedissonClient redissonClient;

@Override
public Result seckillVoucher(Long voucherId) {
        // 1.查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        // 2.判断秒杀是否开始
        if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        // 3.判断秒杀是否已经结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀已经结束!");
        }
        // 4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        Long userId = UserHolder.getUser().getId();
        //创建锁对象 这个代码不用了,因为我们现在要使用分布式锁
        //SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
        RLock lock = redissonClient.getLock("lock:order:" + userId);
        //获取锁对象
        boolean isLock = lock.tryLock();
       
		//加锁失败
        if (!isLock) {
            return Result.fail("不允许重复下单");
        }
        try {
            //获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        } finally {
            //释放锁
            lock.unlock();
        }
 }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

分布式锁-redission可重入锁原理

在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,也是重入一次就加一,释放一次就-1 ,直到减少成0 时,表示当前这把锁没有被人持有。

在redission中,也支持支持可重入锁。

在分布式锁中,采用hash结构用来存储锁,其中大key表示表示这把锁是否存在,用小key表示当前这把锁被哪个线程持有,所以接下来我们一起分析一下当前的这个lua表达式

"if (redis.call('exists', KEYS[1]) == 0) then " +
                  "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                  "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "return redis.call('pttl', KEYS[1]);"
1
2
3
4
5
6
7
8
9
10
11

这个地方一共有3个参数

  • KEYS[1] : 锁名称
  • ARGV[1]: 锁失效时间
  • ARGV[2]: id + ":" + threadId; 锁的小key

具体判断逻辑:

  1. exists: 判断数据是否存在 name:是lock是否存在,如果==0,就表示当前这把锁不存在。
    • redis.call('hset', KEYS[1], ARGV[2], 1), 此时他就开始往redis里边去写数据 ,写成一个hash结构Lock{ id + ":" + threadId : 1}
    • redis.call('pexpire', KEYS[1], ARGV[1]),设置锁的超时时间
  2. 如果当前这把锁存在,则第一个条件不满足,再判断 redis.call('hexists', KEYS[1], ARGV[2]) == 1 ,此时需要通过大key+小key判断当前这把锁是否是属于自己的;
  3. 如果是自己的,则进行 redis.call('hincrby', KEYS[1], ARGV[2], 1),将当前这个锁的value进行+1 ,redis.call('pexpire', KEYS[1], ARGV[1]); 然后再对其设置过期时间
  4. 如果以上两个条件都不满足,则表示当前这把锁抢锁失败,最后返回pttl,即返回当前这把锁的失效时间

分布式锁-redission锁重试和WatchDog机制

抢锁过程中,获得当前线程,通过tryAcquire进行抢锁,该抢锁逻辑和之前逻辑相同

  1. 先判断当前这把锁是否存在,如果不存在,插入一把锁,返回null
  2. 判断当前这把锁是否是属于当前线程,如果是,则返回null
  3. 所以如果返回是null,则代表着当前这哥们已经抢锁完毕,或者可重入完毕
  4. 但是如果以上两个条件都不满足,则进入到第三个条件,返回的是锁的失效时间,发现有个while( true) 再次进行tryAcquire进行抢锁
long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
    return;
}
1
2
3
4
5
6

接下来会有一个条件分支,因为lock方法有重载方法,一个是带参数,一个是不带参数,如果带带参数传入的值是-1,如果传入参数,则leaseTime是他本身,所以如果传入了参数,此时leaseTime != -1 则会进去抢锁,抢锁的逻辑就是之前说的那三个逻辑

if (leaseTime != -1) {
    return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}
1
2
3

如果是没有传入时间,则此时也会进行抢锁, 而且抢锁时间是默认看门狗时间 commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()

ttlRemainingFuture.onComplete((ttlRemaining, e) 这句话相当于对以上抢锁进行了监听,也就是说当上边抢锁完毕后,此方法会被调用,具体调用的逻辑就是去后台开启一个线程,进行续约逻辑,也就是看门狗线程。

RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,
                                        commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),
                                        TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
    if (e != null) {
        return;
    }

    // lock acquired
    if (ttlRemaining == null) {
        scheduleExpirationRenewal(threadId);//里面调用renewExpiration
    }
});
return ttlRemainingFuture;
1
2
3
4
5
6
7
8
9
10
11
12
13
14

由于默认设置了一个30s的过期时间,为了防止过期之后当前线程还未执行完,所以通过定时任务对过期时间进行续约。

  • 首先,会先判断在expirationRenewalMap中是否存在了entryName,这是个map结构,主要还是判断在这个服务实例中的加锁客户端的锁key是否存在,
  • 如果已经存在了,就直接返回;主要是考虑到RedissonLock是可重入锁。
  • 定义一个定时任务,该任务中调用renewExpirationAsync方法进行续约。
private void renewExpiration() {
    ExpirationEntry ee = EXPIRATION_RENEWAL_MAP.get(getEntryName());
    if (ee == null) {
        return;
    }
    
    Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
        @Override
        public void run(Timeout timeout) throws Exception {
            ExpirationEntry ent = EXPIRATION_RENEWAL_MAP.get(getEntryName());
            if (ent == null) {
                return;
            }
            Long threadId = ent.getFirstThreadId();
            if (threadId == null) {
                return;
            }
            
            RFuture<Boolean> future = renewExpirationAsync(threadId);
            future.onComplete((res, e) -> {
                if (e != null) {
                    log.error("Can't update lock " + getName() + " expiration", e);
                    return;
                }
                
                if (res) {
                    // reschedule itself
                    renewExpiration();
                }
            });
        }
    }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);
    
    ee.setTimeout(task);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Redisson分布式锁原理

Redisson分布式锁原理总结

Redisson分布式锁原理:

  • 可重入:利用hash结构记录线程id和重入次数

  • 可重试:利用信号量和PubSub功能实现等待、唤醒,获取锁失败的重试机制

  • 超时续约:利用watchDog,每隔一段时间(releaseTime / 3),重置超时时间

Redisson分布式锁主从一致性问题

分布式锁-redission锁的MutiLock原理

为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例:

此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。

为了解决这个问题,redission提出来了MutiLock锁。使用这把锁咱们就不使用主从了,每个节点的地位都是一样的, 这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。

那么MutiLock 加锁原理是什么呢?

当我们去设置了多个锁时,redission会将多个锁添加到一个集合中,然后用while循环去不停去尝试拿锁,但是会有一个总共的加锁时间,这个时间是用需要加锁的个数 * 1500ms ,假设有3个锁,那么时间就是4500ms,假设在这4500ms内,所有的锁都加锁成功, 那么此时才算是加锁成功,如果在4500ms有线程加锁失败,则会再次去进行重试.

总结

  1. 不可重入Redis分布式锁:

    • 原理:利用setnx的互斥性;利用ex避免死锁;释放锁时判断线程标示

    • 缺陷:不可重入、无法重试、锁超时失效

  2. 可重入的Redis分布式锁:

    • 原理:利用hash结构,记录线程标示和重入次数;利用watchDog延续锁时间;利用信号量控制锁重试等待

    • 缺陷:redis宕机引起锁失效问题

  3. Redisson的multiLock:

    • 原理:多个独立的Redis节点,必须在所有节点都获取重入锁,才算获取锁成功

    • 缺陷:运维成本高、实现复杂