hmdp - 优惠卷秒杀
全局唯一ID
每个店铺都可以发布优惠券:
当用户抢购时,就会生成订单并保存到 tb_voucher_order
这张表中,而订单表如果使用数据库自增ID就存在一些问题:
- id的规律性太明显
- 受单表数据量的限制
场景分析:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适。
场景分析二:随着我们商城规模越来越大,MySQL的单表的容量不宜超过500W,数据量过大之后,需要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。
全局ID生成器:是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:
为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:
ID的组成部分:符号位:1bit,永远为0
时间戳:31bit,以秒为单位,可以使用69年
序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID
Redis实现全局唯一Id
@Component
public class RedisIdWorker {
/**
* 开始时间戳
*/
private static final long BEGIN_TIMESTAMP = 1640995200L;
/**
* 序列号的位数
*/
private static final int COUNT_BITS = 32;
private StringRedisTemplate stringRedisTemplate;
public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
public long nextId(String keyPrefix) {
// 1.生成时间戳
LocalDateTime now = LocalDateTime.now();
long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;
// 2.生成序列号
// 2.1.获取当前日期,精确到天
String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
// 2.2.自增长
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);
// 3.拼接并返回
return timestamp << COUNT_BITS | count;
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
添加优惠券
每个店铺都可以发布优惠券,分为平价券和特价券。平价券可以任意购买,而特价券需要秒杀抢购:
- tb_voucher:优惠券的基本信息,优惠金额、使用规则等
- tb_seckill_voucher:优惠券的库存、开始抢购时间,结束抢购时间。特价优惠券才需要填写这些信息
平价券由于优惠力度并不是很大,所以是可以任意领取
而代金券由于优惠力度大,所以像第二种券,就得限制数量,从表结构上也能看出,特价券除了具有优惠券的基本信息以外,还具有库存,抢购时间,结束时间等等字段
实现秒杀下单
下单核心思路:当我们点击抢购时,会触发右侧的请求,我们只需要编写对应的controller即可
秒杀下单应该思考的内容:
下单时需要判断两点:
- 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
- 库存是否充足,不足则无法下单
下单核心逻辑分析:
当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足秒杀条件
比如时间是否充足,如果时间充足,则进一步判断库存是否足够,如果两者都满足,则扣减库存,创建订单,然后返回订单id,如果有一个条件不满足则直接结束。
VoucherOrderServiceImpl
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//5,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//6.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 6.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 6.2.用户id
Long userId = UserHolder.getUser().getId();
voucherOrder.setUserId(userId);
// 6.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
return Result.ok(orderId);
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
库存超卖问题
有关超卖问题分析:
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//5,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
2
3
4
5
6
7
8
9
10
11
12
假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。
超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案:
悲观锁:
- 概念:认为线程安全问题一定会发生,因此在操作数据之前先获取锁,确保线程串行执行。
- 可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等
乐观锁:
概念:认为线程安全问题不一定会发生,因此不加锁,只是在更新数据时去判断有没有其它线程对数据做了修改。
会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功。
核心逻辑:如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如cas
乐观锁的典型代表:就是CAS (Compare And Swap(比较与交换)),是一种无锁算法。
利用cas进行无锁化机制加锁:以秒杀过程中库存stock和版本号version为例,扣库存的操作逻辑是在操作时,对版本号进行+1 操作,然后要求version 如果是1 的情况下,才能操作,那么第一个线程在操作后,数据库中的version变成了2,但是他自己满足version=1 ,所以没有问题;此时线程2执行,线程2 最后也需要加上条件version =1 ,但是现在由于线程1已经操作过了,所以线程2,操作时就不满足version=1 的条件了,所以线程2无法执行成功
版本号法:
CAS法:
乐观锁解决超卖问题
修改代码方案一、
VoucherOrderServiceImpl 在扣减库存时,改为:
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1") //set stock = stock -1
.eq("voucher_id", voucherId).eq("stock",voucher.getStock()).update(); //where id = ? and stock = ?
2
3
以上逻辑的核心含义是:只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的,但是以上这种方式通过测试发现会有很多失败的情况,失败的原因在于:在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败
修改代码方案二、
之前的方式要修改前后都保持一致,但是这样我们分析过,成功的概率太低,所以我们的乐观锁需要变一下,改成stock大于0 即可
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0
2
3
优惠券秒杀-一人一单
需求:修改秒杀业务,要求同一个优惠券,一个用户只能下一单
现在的问题在于:
优惠券是为了引流,但是目前的情况是,一个人可以无限制的抢这个优惠卷,所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单
具体操作逻辑如下:比如时间是否充足,如果时间充足,则进一步判断库存是否足够,然后再根据优惠卷id和用户id查询是否已经下过这个订单,如果下过这个订单,则不再下单,否则进行下单
VoucherOrderServiceImpl
初步代码:增加一人一单逻辑
@Override
public Result seckillVoucher(Long voucherId) {
// 5.一人一单逻辑
// 5.1.用户id
Long userId = UserHolder.getUser().getId();
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我需要使用悲观锁操作
注意:在这里提到了非常多的问题,我们需要慢慢的来思考,首先我们的初始方案是封装了一个createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 。
集群环境下的并发问题
通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。
1、将服务启动两份,端口分别为8081和8082:
2、然后修改nginx的conf目录下的nginx.conf文件,配置反向代理和负载均衡:
upstream backend {
server 127.0.0.1:8081 max_fails=5 fail_timeout=10s weight=1;
server 127.0.0.1:8082 max_fails=5 fail_timeout=10s weight=1;
}
2
3
4
有关锁失效原因分析
由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。