C++ 全栈知识体系C++ 全栈知识体系
✿导航
  • 基础
  • 函数
  • 知识点
  • IO框架
  • 新版本特性
  • 数据库原理
  • SQL语言
  • SQL - MySQL
  • NoSQL - Redis
  • NoSQL - ElasticSearch
  • 算法基础
  • 常见算法
  • 领域算法
  • 分布式算法
  • 数据结构与算法
  • 计算机网络
  • 操作系统
  • 计算机组成
  • 开发
  • 测试
  • 架构基础
  • 分布式系统
  • 微服务
  • 中间件
  • 概念
  • 理论
  • 架构设计原则
  • 设计模式
  • 协议
  • 技术选型
  • 编码规范
  • 流水线构建 - CI/CD
  • 知识点 - Linux
  • 网站 - Nginx
  • 容器化 - Docker
  • 容器编排 - Kubernetes
  • 服务网格 - Service Mesh Istio
  • 常用快捷键 - Shortcut
  • 工具使用 - Tools
  • 开源项目
  • 学习项目
  • 个人项目
  • 项目开发
  • 项目Idea
  • 并发
  • 部署
  • 分布式
  • 知识
  • 问题
  • 编程语言与技术
  • 系统与架构
  • 软件开发实践
  • 数据处理与应用设计
  • 个人
  • 产品
  • 团队
  • 知识体系
  • Vue
关于
✿导航
  • 基础
  • 函数
  • 知识点
  • IO框架
  • 新版本特性
  • 数据库原理
  • SQL语言
  • SQL - MySQL
  • NoSQL - Redis
  • NoSQL - ElasticSearch
  • 算法基础
  • 常见算法
  • 领域算法
  • 分布式算法
  • 数据结构与算法
  • 计算机网络
  • 操作系统
  • 计算机组成
  • 开发
  • 测试
  • 架构基础
  • 分布式系统
  • 微服务
  • 中间件
  • 概念
  • 理论
  • 架构设计原则
  • 设计模式
  • 协议
  • 技术选型
  • 编码规范
  • 流水线构建 - CI/CD
  • 知识点 - Linux
  • 网站 - Nginx
  • 容器化 - Docker
  • 容器编排 - Kubernetes
  • 服务网格 - Service Mesh Istio
  • 常用快捷键 - Shortcut
  • 工具使用 - Tools
  • 开源项目
  • 学习项目
  • 个人项目
  • 项目开发
  • 项目Idea
  • 并发
  • 部署
  • 分布式
  • 知识
  • 问题
  • 编程语言与技术
  • 系统与架构
  • 软件开发实践
  • 数据处理与应用设计
  • 个人
  • 产品
  • 团队
  • 知识体系
  • Vue
关于
  • 编程语言与技术

    • Effective C++: 改善程序与设计的55个具体做法

      • 第2章 - 构造/析构/赋值运算(一)
      • 第2章 - 构造/析构/赋值运算(二)
      • 第2章 - 构造/析构/赋值运算(三)
      • 第3章 - 资源管理
      • 第4章 - 设计与声明(一)
      • 第4章 - 设计与声明(二)
      • 第5章 - 实现(一)
      • 第5章 - 实现(二)
      • 第6章 - 继承与面向对象设计
      • 第7章 - 模板与泛型编程
    • 深度探索C++对象模型

      • 第1章 - 关于对象
      • 第2章 - 构造函数语意学
      • 第3章 - Data 语意学
    • STL源码剖析

      • 第1章 - STL概论和版本简介
      • 第2章 - 空间配置器
      • 第3章 - 迭代器(iterators)概念与traits编程技法(一)
      • 第3章 - 迭代器(iterators)概念与traits编程技法(二)
      • 第4章 - 序列式容器 vector
      • 第4章 - 序列式容器 list
      • 第4章 - 序列式容器 deque
      • 第4章 - 序列式容器 stack和queue
      • 第4章 - 序列式容器 heap
      • 第4章 - 序列式容器 priority_queue
      • 第4章 - 序列式容器 slist
      • 第5章 - 关联式容器 RB-tree
      • 第5章 - 关联式容器 set和map
      • 第5章 - 关联式容器 hashtable
      • 第6章 - 算法
      • 第6章 - 算法之set
      • 第7章 - 仿函数
      • 第8章 - 配接器
  • 系统与架构

    • 深入理解计算机系统

      • 第1章 - 计算机系统漫游
      • 第2章 - 信息的表示和处理
      • 第3章 - 程序的机器级表示
      • 第5章 - 优化程序性能
      • 第6章 - 存储器层次结构
      • 第7章 - 链接
      • 第8章 - 异常控制流
      • 第9章 - 虚拟内存
      • 第10章 - 系统级I/O
      • 第11章 - 网络编程
      • 第12章 - 并发编程
    • 大型网站技术架构——核心原理与案例分析

      • 第1章 - 大型网站架构演化
      • 第2章 - 大型网站架构模式
      • 第3章 - 大型网站核心架构要素
      • 第4章 - 瞬时响应:网站的高性能架构
      • 第5章 - 万无一失:网站的高可用架构
      • 第6章 - 永无止境:网站的伸缩性架构
      • 第7章 - 随需应变:网站的可扩展架构
      • 第8章 - 固若金汤:网站的安全架构
    • 从零开始学架构

      • 架构基础
      • 架构设计原则
      • 高性能架构
      • 高可用架构
    • 程序员的自我修养————链接、装载与库

      • 第1章 - 简介
      • 第2章 - 静态链路
      • 第3章 - 目标文件里有什么
      • 第4章 - 静态链接
      • 第7章 - 动态链接
      • 第8章 - 共享库版本
      • 第10章 - 内存
      • 第11章 - 运行库
      • 第12章 - 系统调用与API
      • 第13章 - 运行库实现
  • 软件开发实践

    • 重构改善既有代码的设计

      • 第1章 - 重构,第一个示例
      • 第2章 - 重构的原则
      • 第3章 - 代码的坏味道
      • 第5章 - 重构列表
      • 第6章 - 重新组织函数
      • 第7章 - 在对象之间搬移特性
      • 第8章 - 重新组织数据
      • 第9章 - 简化条件表达式
      • 第10章 - 简化函数调用
      • 第11章 - 处理概括关系
      • 第12章 - 设计之大型重构
    • 代码大全2

      • 第1章 - 欢迎进入软件构建的世界
      • 第2章 - 用隐喻来更充分地理解软件开发
      • 第3章 - 三思而后行: 前期准备
      • 第4章 - 关键的构建决策
      • 第5章 - 软件构建中的设计
    • Linux多线程服务端编程——使用muduo C++ 网络库

      • Buffer类的设计
      • 设计与实现
      • 定时器与TimerQueue
      • Protobuf网络传输和Protobuf编解码器与消息分发器
      • EventLoop类剖析
      • EventLoopThread和EventLoopThreadPool剖析
      • TCP网络库和核心类
      • Connector剖析
      • TcpClient剖析
      • 学习总结
      • timing wheel
      • 消息广播服务
      • 线程安全的对象生命期管理
  • 数据处理与应用设计

    • 数据密集型应用系统设计

      • 第1章 - 可靠、可扩展与可维护的应用系统
      • 第2章 - 数据模型与查询语言
      • 第3章 - 数据存储与检索
      • 第4章 - 数据编码与演化
      • 第5章 - 数据复制
      • 第6章 - 数据分区
      • 第7章 - 事务

muduo - 设计与实现

  • EventLoop类
  • Channel 类
    • poll简述
  • Poller类

Reactor 介绍

Reactor模式用 非阻塞IO + poll(epoll)函数来处理并发,程序的基本结构是一个事件循环,以事件驱动和事件回调的方式实现业务逻辑。可参考《基于I/O复用的Reactor模式》。

while(!done)
{
    int retval  = poll(fds,nfds,timeout)
    if(retval < 0)
        处理错误,回调用户的error handler
    else{
        处理到期的timers,回调用户的timer handler
        if(retval > 0){
            处理IO事件,毁掉用户的IO event handler
        }
    }
}

单线程Reactor实现

muduo的Reactor核心主要由 EventLoop、Channel、Poller、TimerQueue这几个类完成。代码里面各种回调函数的处理逻辑,使得看起来不直观。另外,这几个类的生命周期也值得注意,容易理不清楚。根据muduo的中心思想one loop per thread ,每个线程只有一个EventLoop对象。同时,每个Channel对象也只属于一个EventLoop,因此每个Channel对象只属于某一个IO线程。每个Channel对象只负责一个文件描述符(fd)的IO事件分发,但它并不拥有这个fd,也不会在析构的时候关闭fd。Channel的生命周期也由owner class负责管理。

EventLoop类

EventLoop类是核心,大多数类都会包含一个EventLoop*的成员,因为所有的事件都会在EventLoop::loop()中通过Channel分发。先来看一下这个loop循环:

void EventLoop::loop()
{
  assert(!looping_);
  assertInLoopThread();
  looping_ = true;
  quit_ = false;  // FIXME: what if someone calls quit() before loop() ?
  LOG_TRACE << "EventLoop " << this << " start looping";

  while (!quit_)
  {
    activeChannels_.clear();
    pollReturnTime_ = poller_->poll(kPollTimeMs, &activeChannels_);
    ++iteration_;
    if (Logger::logLevel() <= Logger::TRACE)
    {
      printActiveChannels();
    }
    // TODO sort channel by priority
    eventHandling_ = true;
    for (Channel* channel : activeChannels_)
    {
      currentActiveChannel_ = channel;
      currentActiveChannel_->handleEvent(pollReturnTime_);
    }
    currentActiveChannel_ = NULL;
    eventHandling_ = false;
    doPendingFunctors();
  }

  LOG_TRACE << "EventLoop " << this << " stop looping";
  looping_ = false;
}

主要处理逻辑:调用poll函数获取activeChannels_,然后遍历activeChannels_,调用handleEvent 处理对应的事件(handleEvent 是 Channel 类的成员函数,它会根据事件的类型去调用不同的 Callback)。

Channel 类

Channel类比较简单,负责IO事件分发,每一个Channel对象都对应了一个fd,它的核心成员如下:

EventLoop* loop_;
const int  fd_;
int        events_;
int        revents_; // it's the received event types of epoll or poll
int        index_; // used by Poller.

ReadEventCallback readCallback_;
EventCallback writeCallback_;
EventCallback closeCallback_;
EventCallback errorCallback_;

Channel会在 handleEvent 函数中将不同的IO事件分发为不同的回调函数,例如readCallback_,writeCallback_。index_是 poller 类中 pollfds_数组的下标。events_和 revents_对应了 struct pollfd 结构中的成员,events_是关心的IO事件,由用户设置;revents_是目前活动的事件,由EventLoop/Poller设置。

Channel::update()会调用EventLoop::updateChannel(),后者会转而调用Poller::updateChannel(),其函数会对pollfds_作添加或更新处理。

poll简述

poll的使用方法与select相似,轮询多个文件描述符,有读写时设置相应的状态位,poll相比select优在没有最大文件描述符数量的限制。

# include <poll.h>
int poll ( struct pollfd * fds, unsigned int nfds, int timeout);
 
struct pollfd {
int fd;         /* 文件描述符 */
short events;         /* 等待的事件 */
short revents;       /* 实际发生了的事件 */
} ; 

每一个pollfd结构体指定了一个被监视的文件描述符,poll函数可以传递多个结构体,表示poll()监视多个文件描述符。每个结构体的events域是监视该文件描述符的事件掩码,由用户来设置这个域。revents域是文件描述符的操作结果事件掩码,内核在调用返回时设置这个域。events域中请求的任何事件都可能在revents域中返回。

poll函数的事件标志符值如下:

常量说明
POLLIN普通或优先级带数据可读
POLLRDNORM普通数据可读
POLLRDBAND优先级带数据可读
POLLPRI高优先级数据可读
POLLOUT普通数据可写
POLLWRNORM普通数据可写
POLLWRBAND优先级带数据可写
POLLERR发生错误
POLLHUP发生挂起
POLLNVAL描述字不是一个打开的文件

Poller类

Poller类在这里是poll函数的封装(在muduo源码里面是抽象基类,支持poll和epoll),Poller 的职责也很简单,负责IO multiplexing,一个 EventLoop 有一个 Poller,Poller的生命周期和 EventLoop一样长。它有两个核心的数据成员:

typedef std::vector<struct pollfd> PollFdList;
typedef std::map<int, Channel*> ChannelMap;  // fd to Channel
PollFdList pollfds_;
ChannelMap channels_;

ChannelMap是fd到Channel类的映射,PollFdList保存了每一个fd所关心的事件,用作参数传递到poll函数中,Channel类里面的index_即是这里的下标。Poller类有下面四个函数:

Timestamp poll(int timeoutMs, ChannelList* activeChannels);
void updateChannel(Channel* channel);
void removeChannel(Channel* channel);
private:
void fillActiveChannels(int numEvents, ChannelList* activeChannels) const;
updateChannel主要功能是负责维护和更新pollfds_数组,removeChannel负责从pollfds_移除指定channel对应的fd。

poll函数是对::poll的封装,获取当前活动的IO事件,然后填充调用方传入的activeChannels。其中主要逻辑:poll(&*pollfds_.begin(), pollfds_.size(), timeoutMs);//pollfds_传入传出参数,有读写时设置相应的状态位。

Timestamp PollPoller::poll(int timeoutMs, ChannelList* activeChannels)
{
  // XXX pollfds_ shouldn't change
  int numEvents = ::poll(&*pollfds_.begin(), pollfds_.size(), timeoutMs);//pollfds_传入传出参数,有读写时设置相应的状态位
  int savedErrno = errno;
  Timestamp now(Timestamp::now());
  if (numEvents > 0)
  {
    LOG_TRACE << numEvents << " events happened";
    fillActiveChannels(numEvents, activeChannels);
  }
  else if (numEvents == 0)
  {
    LOG_TRACE << " nothing happened";
  }
  else
  {
    if (savedErrno != EINTR)
    {
      errno = savedErrno;
      LOG_SYSERR << "PollPoller::poll()";
    }
  }
  return now;
}

fillActiveChannels 函数遍历pollfds_,找出有活动事件的fd(pollfds_中fd对应的revents已经在poll函数中置位了),把它对应的Channel添加到 activeChannels(vector<Channel*>)这个结构中,返回给用户。

void PollPoller::fillActiveChannels(int numEvents, ChannelList* activeChannels) const
{
  for (PollFdList::const_iterator pfd = pollfds_.begin();
      pfd != pollfds_.end() && numEvents > 0; ++pfd)
  {
    if (pfd->revents > 0)
    {
      --numEvents;
      ChannelMap::const_iterator ch = channels_.find(pfd->fd);
      assert(ch != channels_.end());
      Channel* channel = ch->second;
      assert(channel->fd() == pfd->fd);
      channel->set_revents(pfd->revents);
      // pfd->revents = 0;
      activeChannels->push_back(channel);
    }
  }
}

综上所述,EventLoop:loop()中调用Poller::poll()获取当前的活动事件的Channel列表,然后依次调用每个Channel的handleEvent函数进行处理,总体的处理时序图如下:

Reactor时序图

Last Updated:
Contributors: klc407073648
Prev
Buffer类的设计
Next
定时器与TimerQueue